Reconstruction of the Taguchi Orthogonal Arrays with the Support Vector Machines Method
نویسندگان
چکیده
Design of Experiment (DOE) is a widely used method for examining experiments especially in industrial production and robust design processes. This set statistical approaches which mathematical models are developed through experimental testing to estimate possible outputs given input values or parameters. The aims determine the main factors that affect results with smallest number studies. In this study, L16 (2^15) orthogonal array, was Taguchi parameter reconstructed Support Vector Machines learning model Pearson VII kernel function. With model, array elements were successfully classified 87.04%. new original compared 3.8% difference measured between their Signal Noise (S / N) ratios an exemplary experiment.
منابع مشابه
E-mail Spam Filtering Based on Support Vector Machines with Taguchi Method for Parameter Selection
Support Vector Machines (SVM) is a powerful classification technique in data mining and has been successfully applied to many real-world applications. Parameter selection of SVM will affect classification performance much during training process. However, parameter selection of SVM is usually identified by experience or grid search (GS). In this study, we use Taguchi method to make optimal appr...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
A Method to Boost Support Vector Machines
Combining boosting and Support Vector Machine (SVM) is proved to be beneficial, but it is too complex to be feasible. This paper introduces an efficient way to boost SVM. It embraces the idea of active learning to dynamically select important samples into training sample set for constructing base classifiers. This method maintains a small training sample set with settled size in order to cont...
متن کاملSupport Vector Machines Parameter Selection Based on Combined Taguchi Method and Staelin Method for E-mail Spam Filtering
Support vector machines (SVM) are a powerful tool for building good spam filtering models. However, the performance of the model depends on parameter selection. Parameter selection of SVM will affect classification performance seriously during training process. In this study, we use combined Taguchi method and Staelin method to optimize the SVM-based E-mail Spam Filtering model and promote spam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Balkan journal of electrical & computer engineering
سال: 2021
ISSN: ['2147-284X']
DOI: https://doi.org/10.17694/bajece.839449